

EMC for Mainframe "Tape on Disk" Solutions

May 2012

zMainframe

Never trust a computer you can lift!

EMC & Bus-Tech for Mainframe

- EMC supports mainframe systems since 1990 with first integrated cached disk array Symmetrix
- Bus-Tech was founded in 1987 as a developer of mainframe channel emulation technology
- 6 year partnership with Bus-Tech culminates into acquisition in 2010
- 3 lines of products
 - DLm1000 (gateway)
 - DLm2000 (integrated)
 - DLm6000 (integrated)

People – EMC BRSM

- A Division of BRS focusing on Mainframe Tape Solutions
- Created from the acquisition of Bus-Tech
- World wide responsibility to develop the DLm products within EMC
- A Specialty Sales/TC Force within BRS
- Work with field BRS Mainframe TC Specialists, BRS Reps and TCs

Typical Mainframe Tape Challenges:

- Improve performance of tape applications
- Improve SLA's
- Reduce batch and backup windows
- Reduce CPU consumption
- 100% disaster recovery compliance
- Eliminate exposure to stolen tapes
- Reduce operating costs (tapes, power, etc.)
- Eliminate data loss (multiple tapes)
- Increase efficiencies of storage personnel

Typical Mainframe Use Cases for Tape

BACKUP

- 3390 DASD volume dumps
 - Fixed size volumes
 - 3, 9, 27, and 54 GB
- z/OS leading backup applications
 - FDR—InnovationData Processing
 - DSS—IBM

HSM MIGRATION

- Migrates data between different storage classes
- Meant to conserve DASD usage
- Can use significant CPU cycles

DATA ARCHIVE

- Fixed content data
 - Check images, etc.
 - Variable data
- z/OS leading archive applications
 - ASG-ViewDirect
 - IBM ImagePlus

WORK TAPES

- Short retention temporary tapes
- High read/write requirements
- Example: Syncsort work files
- Transaction log files
- SMF data files

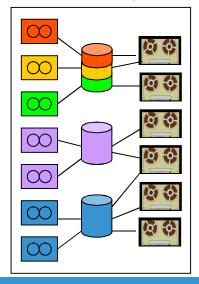
Evolution of Mainframe Tape

1978 1988 1998 2008

DLM

Magnetic Reel

- Batch systems
- Manual tape mounting


Tape Library with Cartridges

- Automated Robotics
- Cheap, reusable

Virtual Tape Systems

- Software emulated tape drives
- Disk Cache to Tape

Disk Library for mainframe

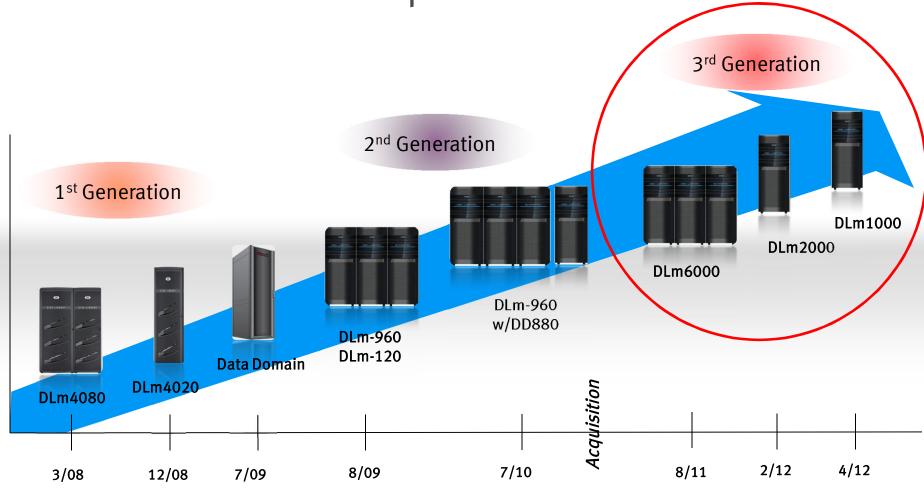
- Appliance based tape drive emulation
- Tape on Disk

One of the reason – why disk instead of tape...

Before (17 floor tiles)

After (1 floor tile)

And Another Example...

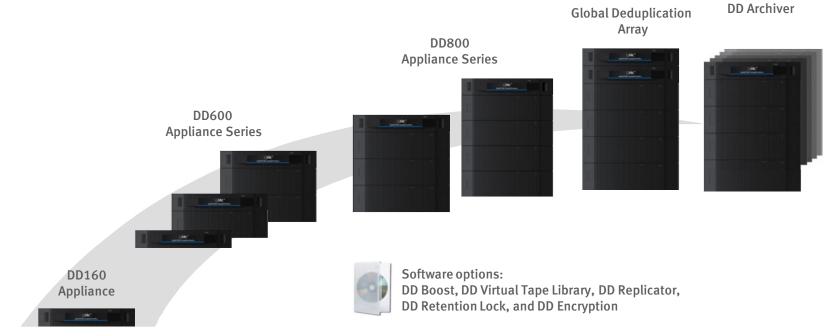


Before After

EMC Mainframe Tape Solutions

Innovation Leadership

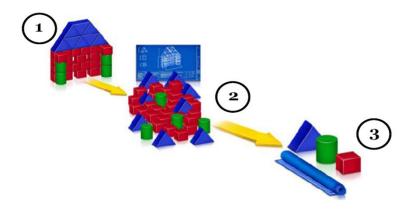
EMC's Mainframe Virtual Tape Solutions

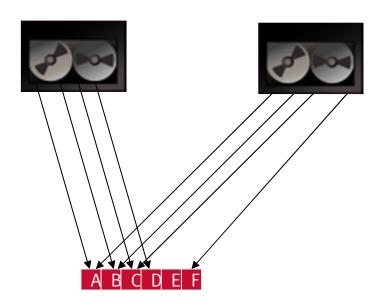


Industry's Most Scalable Inline Deduplication Systems

	DD160	DD620	DD640	DD670	DD860	DD890	Global Deduplication Array	DD Archiver
Speed (DD Boost)	1.1 TB/hr	2.4 TB/hr	3.4 TB/hr	5.4 TB/hr	9.8 TB/hr	14.7 TB/hr	26.3 TB/hr	9.8 TB/hr
Speed (other)	667 GB/hr	1.1 TB/hr	2.3 TB/hr	3.6 TB/hr	5.1 TB/hr	8.1 TB/hr	10.7 TB/hr	4.3 TB/hr
Logical capacity	40-195 TB	83-415 TB	0.32-1.6 PB	0.6-2.7 PB	1.4-7.1 PB	2.9-14.2 PB	5.7-28.5 PB	5.7-28.5 PB
Usable capacity	Up to 3.98 TB	Up to 8.3 TB	Up to 32.2 TB	Up to 55.9 TB	Up to 142 TB	Up to 285 TB	Up to 570 TB	Up to 570 TB

Disk Library for Mainframe Products Comparison

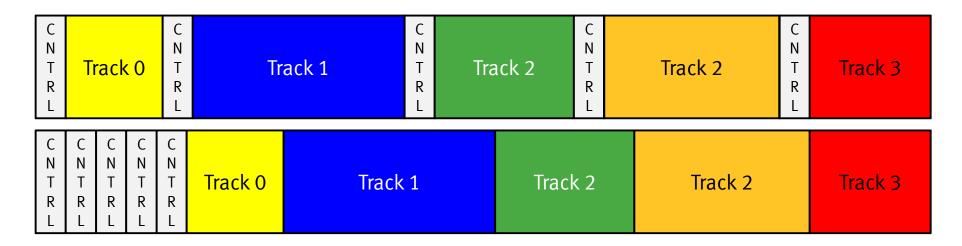

	DLm1000	DLm2000	DLm6000
Number of VTEs	1	1 or 2	2–6
Connectivity	FICON	FICON	FICON
Number of channels to host	1 or 2	2 or 4	4–12
Number of virtual tape drives	32 or 128	Up to 512	Up to 1,536
Maximum capacity (usable)	5.7 PB	13 TB-143 TB	40 TB-5.7 PB
Performance	Up to 340 MB/s	Up to 680 MB/s	Up to 2 GB/s
Number of cabinets	0	1	2-7
Deduplication storage	✓	×	✓
Replication	✓	✓	✓
Hardware compression	✓	✓	✓
WORM tape	×	✓	✓
Guaranteed replication	×	✓	✓
RSA key management	×	×	✓



Data de-duplication

- Data de-duplication (often called "intelligent compression") is a method of reducing storage needs by eliminating redundant data.
- Only one unique instance of the data is actually retained on storage media.
- Redundant data is replaced with a pointer to the unique data copy.
- The difference between the classic compression and de-duplication is that compression reduces duplicate data only within specific parts of individual file, whiles de-duplication eliminates the redundant segments among many files/objects.

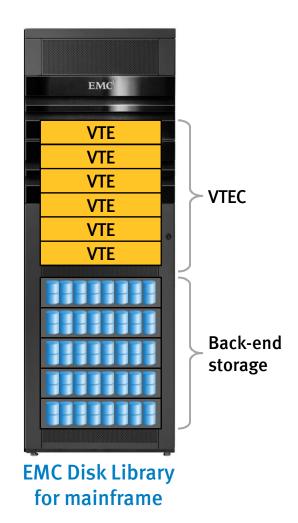
Dedup Benefits



- Store more on Less
- Use less energy
- Use less physical space
- Replicate faster, easier (lower bandwidth needs)
- Have a guarantee of restore through the integrity checker of each element on regular basis

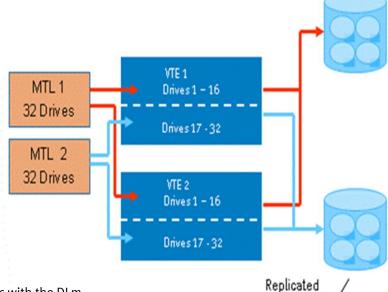
AMDD - Assisted Mainframe Data De-Dupe

- √ Virtuent as a list of supported application (e.g. FDR, DSS)
- ✓ When a VOLSER arrives in the VTE, the first few blocks of data are analyzed.
- ✓ If the data is NOT from one of the AMDD supported applications it will be processed as it is, without using AMDD. The data is written to the back-end storage.
- ✓ If the data is from one of the AMDD supported applications, then the data will be preprocessed by AMDD.
- ✓ Once re-organized, the data is forwarded to the back-end storage, as normal.



DLm 2000/6000 features

- Ideal for backup, archive, batch & HSM
- True IBM tape emulation
 - **-** 3480, 3490, 3590
- Virtual cartridge size up to 16 TB
- Disk consumption is based on data written
- Unlimited number of tape volumes
- Data path: No single point of failure
- High performance
- Hardware compression
- "WORM" tape support (SEC Rule 17a-4f)
- Guaranteed replication
- RSA Encryption (DLm6000 only)
- Disaster recovery vaulting and testing
- Management reporting
- ESRS Support



DLm Mainframe Configuration

- DLm Appears to Mainframe Simply as a Collection of Tape Drives (3480, 3490, 3590)
- No Library Management or Allocation Modifications to the OS are Required
- Each tape VOLSER is kept on disk as a file
- Multiple Virtual Libraries can be Configured
- Up to 64 LPARs May Attach to Each Tape Drive

- EMC Provides Small Utilities to Help Manage the DLm
 - A Scratch Utility (keep your tape management system scratch status in sync with the DLm scratch status)
 - > A Utility to Send Commands to DLm
 - > A utility allowing you to define scratch volumes to an MTL
 - A program that runs as a started task in z/OS to allow message and command exchange between the z/OS operator console and the DLm controller(s)
 - A utility that provides statistics reports on the usage of the DLm controller(s)

Configuring Virtual Tapes in Mainframe OS

Virtuent Supports Three Alternatives for Device Configuration

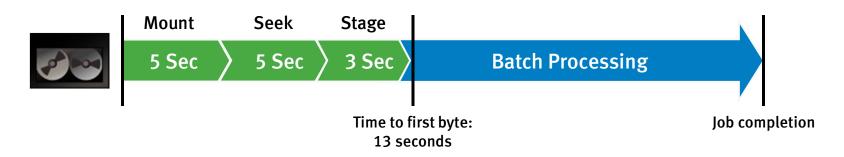
1. Manual Tape Library (MTL) - Preferred

- ✓ Devices are defined as 3490 / 3590
- Devices are defined as part of a library
- ✓ A new SMS Storage Group is Defined for the MTL
- ✓ Volumes must be entered into the TCDB
- ✓ SMS ACS routines are Updated to Allocate the Storage Group

2. As real 3480, 3490, or 3590 Devices

- ✓ Usable when real devices are not present
- May require modification to standard Esoterics

3. Bus-Tech User Information Module (UIM)


- ✓ Makes devices unique device type (v3480, v3481) requiring specific allocation.
- ✓ Easiest to implement
- ✓ Works good for some applications (Mobius ViewDirect)
- ✓ Does not work with some IBM software (HSM and OAM)

DLm Performance vs. Tape

Physical Tape

Disk Library for Mainframe

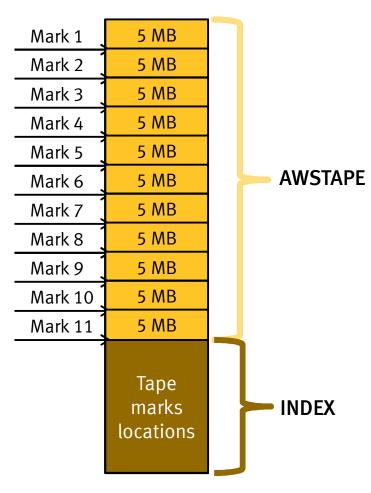
Disk Library

for mainframe

Mount

Batch Processing at Disk Speed

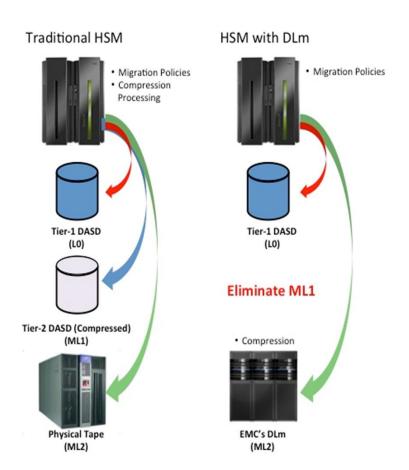
Job completion


Provides...

- Faster time to first byte
 - One second mount time on average
- Faster batch processing

Improved Response Time

File name = Tape VOLSER


- When Disk Library for mainframe writes to tape, it builds an index for fast locate
 - Index is stored at the end of the volume's disk file
 - Contains a pointer to:
 - · Each tape mark location
 - · Each 5 MB block boundary
 - On read, the VTE can go directly to any tape mark
- Fast locate mechanism provides additional performance benefits
 - Response times drop from 15–40 seconds on physical tapes, to less than one second on average
 - Improves service level agreements

Tape image on disk

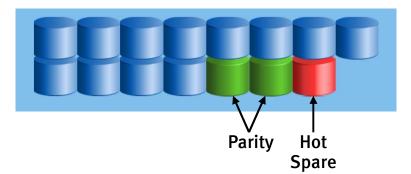
Why Tape-On-Disk As The Next Wave?

- Better performance
- Business continuity
- Higher availability
- Disaster recovery

Reduce HSM CPU Cycles

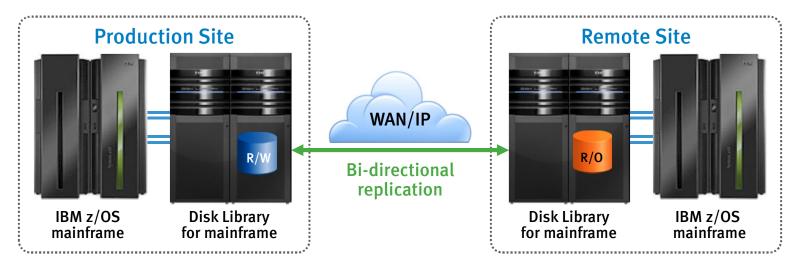
- Reduce/eliminate DFHSM ML1
 - Move directly from L0 to ML2
 - Save the mainframe CPU compression cycles
 - ML2 information is still kept on disk on the DLm
 - Recalls at disk speed
- DFHSM recycle time optimized
 - DFHSM will continue to perform tape recycling
 - Recycling at disk speed
 - User settable virtual cartridge size
 - No contention for tape drives
 - Hours of savings potential

Disk Library for Mainframe



No Single Point of Failure

Any VTE can access any tape volume in the library


- All VTEs can see all tape volumes
- If a VTE fails...
 - Job will fail with tape error (same as with regular tapes)
 - Tape volumes are still available via alternate VTE
 - VTE does not contain metadata
- Disk drives are RAID 6 protected
 - 12 + 2 protection—the best protection
 - Hot spare drive in each disk tray (DAE)

Disaster Recovery Testing

Two ways to conduct disaster recovery testing from copy of production data

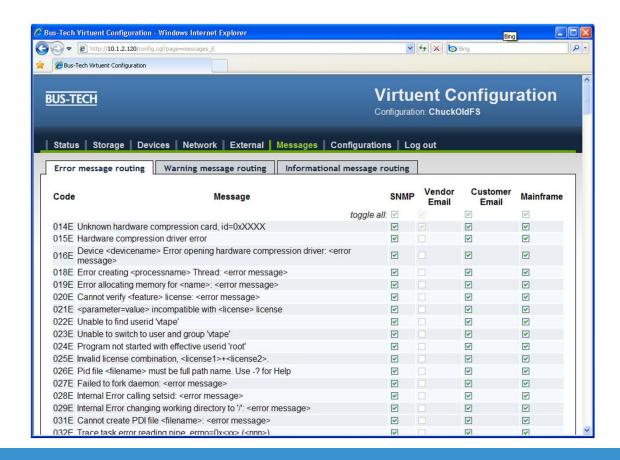
Read-only mounts

- Disk arrays allow instant "read-only" copies
- Confirm that tapes can be mounted and all required data can be accessed
- No incremental storage capacity required

Snapshots

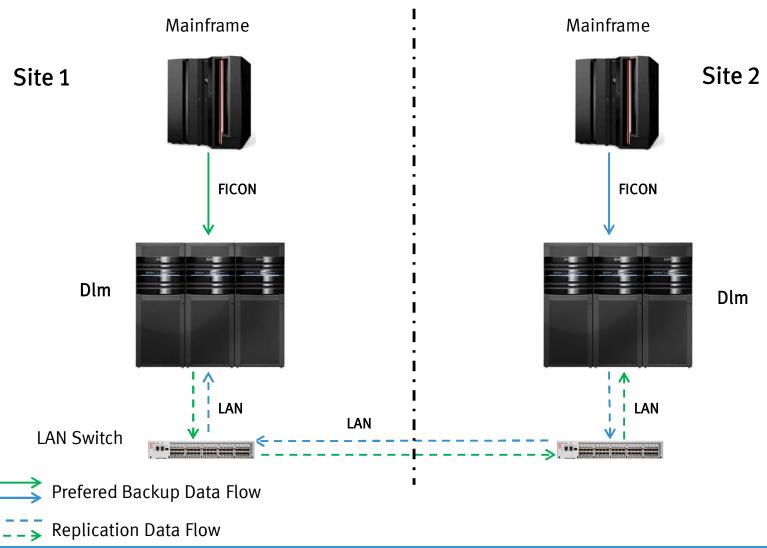
- Disk arrays allow creation of "read-write" snapshot
- Confirm operation at the disaster recovery site
- Some incremental storage capacity required

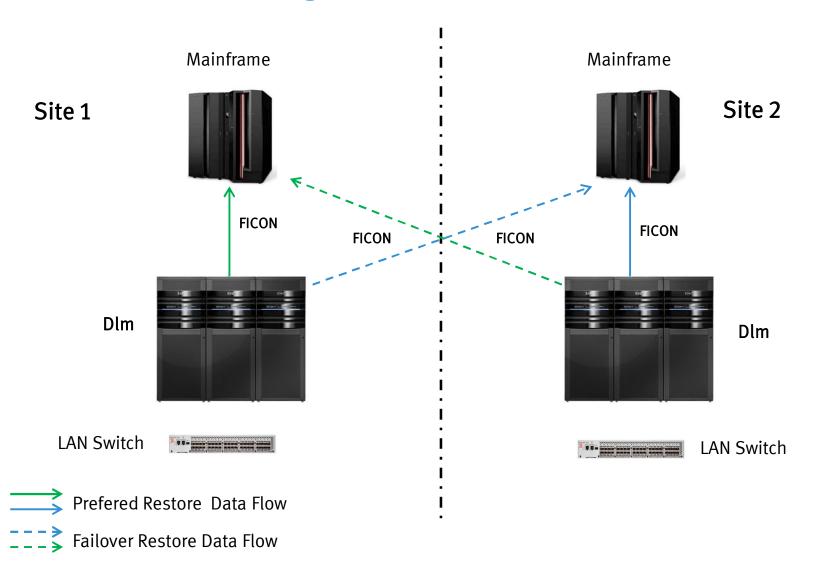
Remote replication is uninterrupted during testing



Virtuent 7

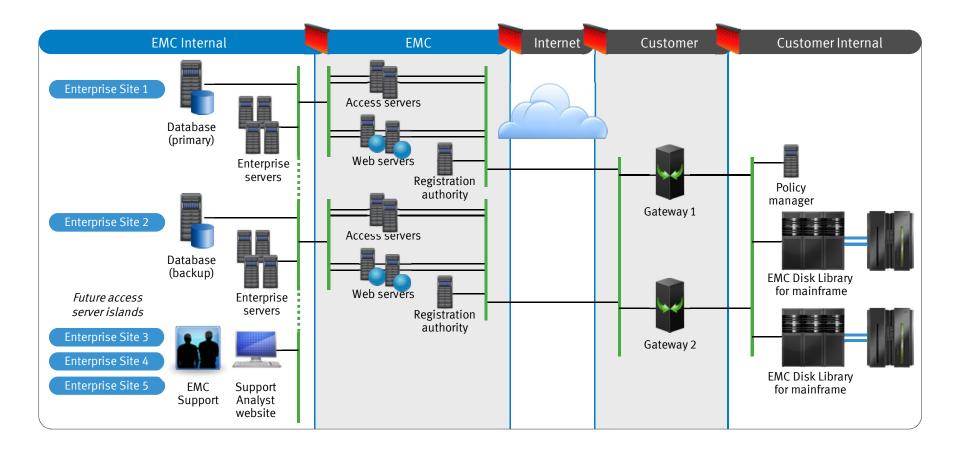
DLm Console – Messages Tab


Provides access for changing error message handling



Mainframe Integration with DLm — Backup

Mainframe Integration with DLm – Restore



Disk Library for Mainframe Support

EMC Secure Remote Services and ConnectEMC

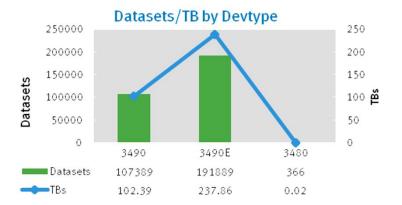
Services: DLm Success Factor

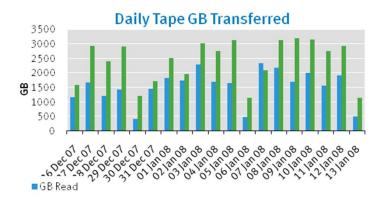
3-Level Architecture

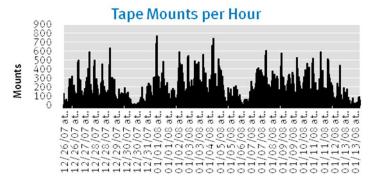
	Level 1: Inventory Current Environment	Level 2: Component-level Details	Level 3: Configuration- level details
Implementation & Integration Services	 Number of SYSPLEXs, LPARs z/OS levels JES versions TMS Network details Tape hardware Allocation ESOTERICs TMC Tape software 	 Tape assessment Customer objectives Generate proposed configuration Project plan Planning guide End-state design document Allocation (SMS, HSC, other) 	 I/O Gen details UCBs Device emulation type(s) CHPIDS ESCON/FICON Esoterics VOLSER ranges TMS Virtual volumes Network

Services: Migrating to DLm Going from STK or IBM to EMC's DLm

- Migrating data from STK/IBM to EMC's DLm
- Develop migration plan
- Implement services

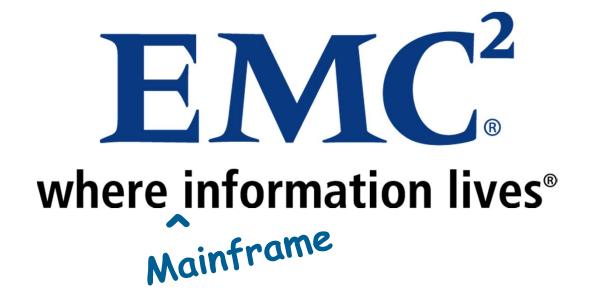






Tape Assessment

- A comprehensive analysis of the current tape environment; data sources include:
 - HSM MCDS data
 - HSM FSR data
 - HSM list TTOC data
 - HSM control parameters
 - System log data
 - Tape device configuration
 - Tape library management system catalog data (TLMS, CA1-TMS, RMM or ZARA)
 - SMF data—record types 14, 15, 21, 30, 40
- Report of the summary of findings:
 - HSM Capacity Analysis
 - HSM Activity Analysis
 - HSM Tape Use
 - HSM Control Parameters Analysis
 - Tape Mount and Transport Activity
 - Tape Library Analysis
 - Tape Bandwidth Analysis



Needs addressed by EMC DLm

- ✓ TCO Reduction
- ✓ DR Strategy improved & simplify
 - ✓ Reduced RTO & RPO
 - ✓ Real read/Write DR testing of 100% of data
- ✓ Tape processing Improvements
 - ✓ Reliability
 - ✓ Speed
 - ✓ Consistency
- ✓ Batch Windows Reduction
- ✓ Eliminate Risks with Physical Tape
- ✓ Reduce Mainframe MIPS (avoiding compression)
- ✓ Reduce Floor Space
- ✓ Reduce energy consumption

